LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

Date: 12-11-2024

B.Sc. DEGREE EXAMINATION – **STATISTICS**

THIRD SEMESTER - **NOVEMBER 2024**

Max.: 100 Marks

UST 3502 - MATRIX AND LINEAR ALGEBRA

Dept. No.

	Time: 09:00 am-12:00 pm	
	SECTION A - K1 (CO1)	
	Answer ALL the Questions (10 x 1 = 10)	
1.	Define the following	
<u>a)</u>	Equality of two matrices	
<u>b)</u>	Fundamental set of solution of the equation AX=0	
<u>c)</u>	Addition of two vectors	
<u>d)</u>	Rank - Multiplicity theorem	
e)	Real quadratic form	
2.	Fill in the blanks	
<u>a)</u>	If p and q are two scalars and a is any m x n matrix, then (q+p)A=	
<u>b)</u>	The rank of the matrix in form is equal to the number of non - zero rows of the matrix.	
<u>c)</u>	The set consisting only of the zero vector is	
<u>d)</u>	The characteristic root of a matrix are either pure imaginary or zero.	
e)	Every matrix congruent to a symmetric matrix is a matrix.	
	SECTION A - K2 (CO1)	
	Answer ALL the Questions (10 x 1 = 10)	
3.	True or False	
a)	Matrix multiplication is associated if conformability is assured.	
b)	The number of linearly independent solution of m homogeneous linear equation in variables is n.	
c)	If A and B are two n - rowed square matrices then Rank (AB)≥ Rank (A)+Rank (B) - n.	
<u>d)</u>	Matrices A and A' have same Eigen values.	
<u>e)</u>	The range of values of two congruent quadratic forms are distinct.	
4.	Match the following	
a)	$\begin{vmatrix} a_{11} & a_{12} \end{vmatrix}$ - 1. Linear transformation	
	$\begin{vmatrix} a_{21} & a_{22} \end{vmatrix}$	
b)	A^{-1} - 2. $x_1^2 - 18x_1x_2 + 5x_2^2$	
c)	$X'AX = Y'BY$ - 3. $a_{11}a_{22} - a_{12}a_{21}$	
d)	$ A - \lambda I = 0 - 4. \frac{Adj A}{ A }$	
e)	$A = \begin{bmatrix} 1 & -9 \\ -9 & 5 \end{bmatrix}$ - 5. Characteristic Equation	
	SECTION B - K3 (CO2)	
Ans	wer any TWO of the following in 100 words each. $(2 \times 10 = 20)$	
5.	Let A be a square matrix of order n, show that $ \overline{A} = \overline{A} $.	
6.	Prove the necessary and sufficient condition for a square matrix A to possess the inverse is $ A \neq 0$.	
7.	$\begin{bmatrix} a & h & g \end{bmatrix}$	
'	Determine the Eigen values of the matrix $A = \begin{bmatrix} a & h & g \\ 0 & b & 0 \end{bmatrix}$.	
8.	Obtain the matrix of the quadratic forms (i) $x^2+2y^2+3z^2+4xy+5yz+6zx$.	
	$\frac{1}{1}$	

SECTION C – K4 (CO3)		
Answer any TWO of the following in 100 words each. $(2 \times 10 = 20)$		
9.	Let A and B be two square matrices of order n and λbe a scalar.	
	Prove that (i) $tr(\lambda A) = \lambda$. $Tr(A)$ (ii) $tr(A+B) = tr(A) + tr(B)$ (iii) $tr(AB) = tr(BA)$.	
10.	Discuss Homogenous and Non-Homogenous system of equations.	
11.	If $\lambda_1, \lambda_2 \dots \lambda_n$ are Eigen values of A, Show that $k\lambda_1, k\lambda_2 \dots \lambda_{kn}$ are Eigen value o KA.	
12.	Reduce the following quadratic form to canonical form, $2x_1^2 + x_2^2 - 3x_3^2 - 8x_2x_3 - 4x_3x_1 + 12x_1x_2$.	
SECTION D – K5 (CO4)		
Ans	wer any ONE of the following in 250 words $(1 \times 20 = 20)$	
13.	Solve the equations:	
	$\lambda x + 2y - 2z - 1 = 0$	
	$4x + 2\lambda y - z - 2 = 0$	
	$6x+6y+\lambda z-3=0$	
14.	State and Prove Cayley-Hamilton Theorem.	
SECTION E – K6 (CO5)		
	wer any ONE of the following in 250 words $(1 \times 20 = 20)$	
15.	1 0 2	
	Obtain the characteristic equation of the matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ and verify that it satisfied by A and	
	[2 0 3]	
	hence find A^{-1}	
16.	$\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$	
	Determine a non-singular matrix P such that P'AP is a diagonal matrix, where $A = \begin{bmatrix} 1 & 0 & 3 \end{bmatrix}$	
	[2 3 0]	

(ii) $ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy$.